1,169 research outputs found

    Collective modes of Fermi superfluid containing vortices along the BEC-BCS crossover

    Full text link
    Using the coarse-grain averaged hydrodynamic approach, we calculate all low energy transverse excitation spectrum of a rotating Fermi superfluid containing vortex lattices for all regimes along the BEC-BCS crossover. In the fast rotating regime, the molecular BEC enters into the lowest Landau level, but the superfluid in the unitarity and the BCS regimes occupies many low-lying Landau levels. The difference between the breathing mode frequencies at the BEC and unitarity limit shrinks to zero as the rotation speed approaches the radial trap frequency, in contrast to the finite difference in the non-rotating systems.Comment: To appear in Physical Review

    Auger decay, Spin-exchange, and their connection to Bose-Einstein condensation of excitons in Cu_2O

    Full text link
    In view of the recent experiments of O'Hara, et al. on excitons in Cu_2O, we examine the interconversion between the angular-momentum triplet-state excitons and the angular-momentum singlet-state excitons by a spin-exchange process which has been overlooked in the past. We estimate the rate of this particle-conserving mechanism and find a substantially higher value than the Auger process considered so far. Based on this idea, we give a possible explanation of the recent experimental observations, and make certain predictions, with the most important being that the singlet-state excitons in Cu_2O is a very serious candidate for exhibiting the phenomenon of Bose-Einstein condensation.Comment: 4 pages, RevTex, 1 ps figur

    Cooling dynamics of ultracold two-species Fermi-Bose mixtures

    Full text link
    We compare strategies for evaporative and sympathetic cooling of two-species Fermi-Bose mixtures in single-color and two-color optical dipole traps. We show that in the latter case a large heat capacity of the bosonic species can be maintained during the entire cooling process. This could allow to efficiently achieve a deep Fermi degeneracy regime having at the same time a significant thermal fraction for the Bose gas, crucial for a precise thermometry of the mixture. Two possible signatures of a superfluid phase transition for the Fermi species are discussed.Comment: 4 pages, 3 figure

    Three-body recombination in a three-state Fermi gas with widely tunable interactions

    Full text link
    We investigate the stability of a three spin state mixture of ultracold fermionic 6^6Li atoms over a range of magnetic fields encompassing three Feshbach resonances. For most field values, we attribute decay of the atomic population to three-body processes involving one atom from each spin state and find that the three-body loss coefficient varies by over four orders of magnitude. We observe high stability when at least two of the three scattering lengths are small, rapid loss near the Feshbach resonances, and two unexpected resonant loss features. At our highest fields, where all pairwise scattering lengths are approaching at=2140a0a_t = -2140 a_0, we measure a three-body loss coefficient L35×1022cm6/sL_3 \simeq 5\times 10^{-22} \mathrm{cm}^6/\mathrm{s} and a trend toward lower decay rates for higher fields indicating that future studies of color superfluidity and trion formation in a SU(3) symmetric Fermi gas may be feasible

    Numerical simulation of exciton dynamics in Cu2O at ultra low temperatures within a potential trap

    Full text link
    We have studied theoretically the relaxation behaviour of excitons in cuprous oxide (Cu2O) at ultra low temperatures when excitons are confined within a potential trap by solving numerically the Boltzmann equation. As relaxation processes, we have included in this paper deformation potential phonon scattering, radiative and non-radiative decay and Auger decay. The relaxation kinetics has been analysed for temperatures in the range between 0.3K and 5K. Under the action of deformation potential phonon scattering only, we find for temperatures above 0.5K that the excitons reach local equilibrium with the lattice i.e. that the effective local temperature is coming down to bath temperature, while below 0.5K a non-thermal energy distribution remains. Interestingly, for all temperatures the global spatial distribution of excitons does not reach the equilibrium distribution, but stays at a much higher effective temperature. If we include further a finite lifetime of the excitons and the two-particle Auger decay, we find that both the local and the global effective temperature are not coming down to bath temperature. In the first case we find a Bose-Einstein condensation (BEC) to occur for all temperatures in the investigated range. Comparing our results with the thermal equilibrium case, we find that BEC occurs for a significantly higher number of excitons in the trap. This effect could be related to the higher global temperature, which requires an increased number of excitons within the trap to observe the BEC. In case of Auger decay, we do not find at any temperature a BEC due to the heating of the exciton gas

    Glycerol carbonate as green solvent for pretreatment of sugarcane bagasse

    Get PDF
    Background\ud Pretreatment of lignocellulosic biomass is a prerequisite for effective saccharification to produce fermentable sugars. We have previously reported an effective low temperature (90 °C) process at atmospheric pressure for pretreatment of sugarcane bagasse with acidified mixtures of ethylene carbonate (EC) and ethylene glycol (EG). In this study, “greener” solvent systems based on acidified mixtures of glycerol carbonate (GC) and glycerol were used to treat sugarcane bagasse and the roles of each solvent in deconstructing biomass were determined. \ud \ud Results\ud Pretreatment of sugarcane bagasse at 90 °C for only 30 min with acidified GC produced a solid residue having a glucan digestibility of 90% and a glucose yield of 80%, which were significantly higher than a glucan digestibility of 16% and a glucose yield of 15% obtained for bagasse pretreated with acidified EC. Biomass compositional analyses showed that GC pretreatment removed more lignin than EC pretreatment (84% vs 54%). Scanning electron microscopy (SEM) showed that fluffy and size-reduced fibres were produced from GC pretreatment whereas EC pretreatment produced compact particles of reduced size. The maximal glucan digestibility and glucose yield of GC/glycerol systems were about 7% lower than those of EC/ethylene glycol (EG) systems. Replacing up to 50 wt% of GC with glycerol did not negatively affect glucan digestibility and glucose yield. The results from pretreatment of microcrystalline cellulose (MCC) showed that (1) pretreatment with acidified alkylene glycol (AG) alone increased enzymatic digestibility compared to pretreatments with acidified alkylene carbonate (AC) alone and acidified mixtures of AC and AG, (2) pretreatment with acidified GC alone slightly increased, but with acidified EC alone significantly decreased, enzymatic digestibility compared to untreated MCC, and (3) there was a good positive linear correlation of enzymatic digestibility of treated and untreated MCC samples with congo red (CR) adsorption capacity.\ud \ud Conclusions\ud Acidified GC alone was a more effective solvent for pretreatment of sugarcane bagasse than acidified EC alone. The higher glucose yield obtained with GC-pretreated bagasse is possibly due to the presence of one hydroxyl group in the GC molecular structure, resulting in more significant biomass delignification and defibrillation, though both solvent pretreatments reduced bagasse particles to a similar extent. The maximum glucan digestibility of GC/glycerol systems was less than that of EC/EG systems, which is likely attributed to glycerol being less effective than EG in biomass delignification and defibrillation. Acidified AC/AG solvent systems were more effective for pretreatment of lignin-containing biomass than MCC

    Stiff knots

    Full text link
    We report on the geometry and mechanics of knotted stiff strings. We discuss both closed and open knots. Our two main results are: (i) Their equilibrium energy as well as the equilibrium tension for open knots depend on the type of knot as the square of the bridge number; (ii) Braid localization is found to be a general feature of stiff strings entanglements, while angles and knot localization are forbidden. Moreover, we identify a family of knots for which the equilibrium shape is a circular braid. Two other equilibrium shapes are found from Monte Carlo simulations. These three shapes are confirmed by rudimentary experiments. Our approach is also extended to the problem of the minimization of the length of a knotted string with a maximum allowed curvature.Comment: Submitted to Phys. Rev.

    Stress Dependence of Exciton Relaxation Processes in Cu2O

    Full text link
    A comprehensive study of the exciton relaxation processes in Cu2O has led to some surprises. We find that the ortho-para conversion rate becomes slower at high stress, and that the Auger nonradiative recombination rate increases with stress, with apparently no Auger recombination at zero stress. These results have important consequences for the pursuit of Bose-Einstein condensation of excitons in a harmonic potential.Comment: 10 figures, 1 tabl

    Development of an apparatus for cooling 6Li-87Rb Fermi-Bose mixtures in a light-assisted magnetic trap

    Full text link
    We describe an experimental setup designed to produce ultracold trapped gas clouds of fermionic 6Li and bosonic 87Rb. This combination of alkali metals has the potential to reach deeper Fermi degeneracy with respect to other mixtures since it allows for improved heat capacity matching which optimizes sympathetic cooling efficiency. Atomic beams of the two species are independently produced and then decelerated by Zeeman slowers. The slowed atoms are collected into a magneto-optical trap and then transferred into a quadrupole magnetic trap. An ultracold Fermi gas with temperature in the 10^-3 T_F range should be attainable through selective confinement of the two species via a properly detuned laser beam focused in the center of the magnetic trap.Comment: Presented at LPHYS'06, 8 figure

    Very long storage times and evaporative cooling of cesium atoms in a quasi-electrostatic dipole trap

    Get PDF
    We have trapped cesium atoms over many minutes in the focus of a CO2_2-laser beam employing an extremely simple laser system. Collisional properties of the unpolarized atoms in their electronic ground state are investigated. Inelastic binary collisions changing the hyperfine state lead to trap loss which is quantitatively analyzed. Elastic collisions result in evaporative cooling of the trapped gas from 25 μ\muK to 10 μ\muK over a time scale of about 150 s.Comment: 5 pages, 3 figure
    corecore